Variational Principle for Weakly Dependent Random Fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong invariance principle for dependent random fields

A strong invariance principle is established for random fields which satisfy dependence conditions more general than positive or negative association. We use the approach of Csörgő and Révész applied recently by Balan to associated random fields. The key step in our proof combines new moment and maximal inequalities, established by the authors for partial sums of multiindexed random variables, ...

متن کامل

Time-dependent variational principle for quantum lattices.

We develop a new algorithm based on the time-dependent variational principle applied to matrix product states to efficiently simulate the real- and imaginary-time dynamics for infinite one-dimensional quantum lattices. This procedure (i) is argued to be optimal, (ii) does not rely on the Trotter decomposition and thus has no Trotter error, (iii) preserves all symmetries and conservation laws, a...

متن کامل

Thermal variational principle and gauge fields.

A Feynman–Jensen version of the thermal variational principle is applied to hot gauge fields, Abelian as well as non–Abelian : scalar electrodynamics (without scalar self–coupling) and the gluon plasma. The perturbatively known self–energies are shown to derive by variation from a free quadratic (”Gaussian”) trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (with...

متن کامل

A Nonconventional Invariance Principle for Random Fields

In [16] we obtained a nonconventional invariance principle (functional central limit theorem) for sufficiently fast mixing stochastic processes with discrete and continuous time. In this paper we derive a nonconventional invariance principle for sufficiently well mixing random fields.

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2020

ISSN: 0022-4715,1572-9613

DOI: 10.1007/s10955-020-02538-8